
Integration Testing in AOSE Methodologies

Manikkanan. D#, Prasanna Kumar.K#, Vagheesan. K*, Venkataramana. D*

#Department of IT, Adhiparasakthi Engineering college, Melmaruvathur, Tamilnadu, India

*Department of CSE, Pondicherry Engineering College, Puducherry, India

Abstract— As agents gain acceptance as a technology there is a
growing need for practical methods for developing agent
applications. Agent Oriented Software Engineering (AOSE)
methodologies were proposed to develop complex distributed
system based upon the agent paradigm. AOSE has several
methodologies that focus only on Software Development Life
Cycle (SDLC) phases such as analysis phase and design phase.
Very few methodologies include implementation phase also.
Although agent technology is gaining world wide popularity, a
hindrance to its uptake is the lack of proper testing
mechanisms for agent based systems. The main objective of
our paper is to incorporate testing phase in existing AOSE
methodology named Prometheus. Recent survey claims that
unit testing framework is been developed for Prometheus
methodologies and our work extends by developing integrated
testing framework.
Keywords- Agent-Oriented Software Engineering, Multi-Agent
Systems, Unit Testing, Integration Testing.

I. INTRODUCTION
A software development methodology refers to the
framework that is used to structure, plan, and control the
process of developing a software system [1]. A wide
variety of such frameworks have evolved over the years,
each with its own recognized strength and weaknesses.
Now an increasing number of problems in industrial,
commercial, medical, networking and educational
application domains are being solved by agent-based
solutions [2]. The key abstraction in these solutions is the
agent. An “agent” is an autonomous, flexible and social
system that interacts with its environment in order to satisfy
its design agenda. In some cases, two or more agents
should interact with each other in a multi agent system
(MAS) to solve a problem that they cannot handle alone.

Agent-oriented software engineering (AOSE) is a new
discipline that encompasses necessary methods, techniques
and tools for developing agent-based systems. It is a
powerful way of approaching complex and large scale
software engineering problems and developing agent-base
systems. Several AOSE methodologies were proposed for
developing software, equipped with distinct concepts and
modeling tools, in which the key abstraction used in its
concepts is that of an agent [3]. Few AOSE methodologies
were listed below.

1. MAS CommonKADS (1996-1998)
2. MaSE(1999)
3. GAIA(2000)
4. MESSAGE(2001)
5. TROPOS(2002)
6. PROMETHEUS(2002)
7. ADLEFE(2002)
8. INGENIAS(2002)
9. PASSI(2002)

 10. AOR Modeling(2003)

When we analysed and compared the strengths and
weaknesses of the above mentioned AOSE methodologies,
the strong weakness that we observed from almost all the
methodologies were, there is no proper testing mechanism
for testing the agent-oriented software [4]. Our works aims
to incorporate testing mechanism in Prometheus
methodology

II. PROMETHEUS BACKGROUND

Prometheus is intended to be a practical methodology
which is complete and detailed. Prometheus is sufficiently
complete such that it covers a range of activities from
requirements specification through to detailed design; and
it is been sufficiently detailed in that it provides detailed
guidance on how to perform the various steps that form the
process of Prometheus. The Prometheus methodology
includes a description of concepts for designing agents, a
process, a number of notations for capturing designs, as
well as many “tips” or techniques that give advice on how
to carry out the steps of Prometheus’ process. In
Prometheus, an agent’s interface with its environment is
expressed in terms of percepts and actions. Proactive
agents pursue goals, and reactive agents respond to events
(“significant occurrences”). Agents have beliefs and plans.
Finally, social agents use messages to communicate, and
these messages are collected in interaction protocols.

Figure.1 Prometheus Methodology

Manikkanan. D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 492-497

www.ijcsit.com 492

1. The system specification phase focuses on
(i) identifying the system’s interface, that, since we are
dealing with situated agents, consists of percepts
(information from the environment), and actions; and
(ii) determining the system’s goals, functionalities, and
use case scenarios, along with any important shared
data. The outputs from this phase are a set of
functionality descriptions, percept and action
descriptions, system goals, and use case scenarios.

2. The architectural design phase uses the outputs from
the previous phase to determine which agents the
system will contain, how they will interact, and what
significant events occur in the environment. The
outputs of this phase are a system overview diagram,
agent descriptions, agent interaction protocols and a
list of significant events and messages between agents.

3. The detailed design phase looks at the internals of each
agent and how it will accomplish its tasks within the
overall system. The outcomes of this phase are detailed
diagrams showing the internal functionality of each
agent and its capabilities, process diagrams that show
the internal processing of the agent, as well as
descriptions of data structures used by the agent, plans
and subtasks and the details of plan triggers.

Each of these phases includes models that focus on the
dynamics of the system, (graphical) models that focus on
the structure of the system or its components, and textual
descriptor forms that provide the details for individual
entities.
Testing is an important step in software development in
order to assure the correctness of software. Although there
are some works on agent oriented testing [1], [6], [7], [8],
[10], this activity is often disregarded in most agent
oriented methodologies including Prometheus methodology.
One reason for this may be that these methodologies
mainly focus on analysis and design, as they consider that
implementation and testing issues can be performed using
well established techniques, mainly from object-oriented
software engineering [2]. However, there are relevant
features of the agent paradigm that are not yet covered by
those more traditional techniques. For instance, autonomy,
proactivity, and interactions of agents.

III. EXISTING WORK

Unit Testing recently incorporated into the Prometheus
Methodology [5], which tests the plans, events that are
handled by multiple plans, and plans that form cyclic
dependencies. For instance, plans are triggered by events, an
event may be handled by more than one plan, and plans may
generate events that trigger other plans either in sequence or
in parallel and so on. They presented an overview of the
testing process and mechanisms for identifying the order in
which the units are to be tested and for generating the input
that forms test cases.
They have developed a testing framework [5], which
automatically generates and executes unit test cases for an
agent system based on its design model (developed in PDT).
The testing framework is based on the notion of model
based testing [11] which proposes that testing be in some
way based on design models of the system. The
Prometheus methodology has well developed structured

models that are suitable as a basis for model based testing.
The design model provides information against which the
implemented system can be tested, and also provide an
indication of the kind of faults that one might discover as
part of a testing process.

Figure.2 Agent Component Hierarchy in Prometheus

Figure.2 [5] outlines the components of an agent within the
Prometheus design. An agent may consist of plans, events
and belief-sets, some of which may be encapsulated into
capabilities. Percepts and incoming messages are inputs to
the agent, while actions and outgoing messages are outputs
from the agent. They identify plans, events and belief-sets
as the units subject to testing. In their current
implementation they do not test belief-sets, which is left for
future work.
In many agent systems paradigms (including BDI - Belief,
Desire, and Intention [12]) there is a concept of an event
which triggers selection of one of some number of
identified plans, depending on the situation. If one of these
plans is actually never used, then this is likely to indicate an
error. The concepts of event and plan, and the relationships
between them are part of typical agent designs, and can
thus be used for model based testing of agent systems.
Effective testing of an agent system needs to take account
of these kinds of relationships.

IV. PROPOSED WORK
After agent has been unit-tested [3], [5], we have to test its
integration with existing agents. In some circumstances, we
have to test also the integration of that agent with the
agents that will be developed and integrated subsequently.
Integration testing involves making sure an agent works
properly with the agents that have been integrated before it
and with the “future” agents that are in the course of agent
testing or that are not ready to be integrated.
In Integration testing we have to test the interaction of
agents, communication protocol and semantics, interaction
of agents with the environment, integration of agents with
shared resources. Observe emergent properties, collective
behaviours; make sure that a group of agents and
environmental resources work correctly together.
In design of the system we identify a set of collaborative
goals. For each of these goals we identify agents that are
involved, interaction scenarios, and protocols. Then, we
identify fulfillment criteria for the goal. Finally, for each
scenario we can define a test suite making use of data
identified, i.e. agents, protocols, criteria, and so on.
Integration test suite derivation takes place once we have
finished detailed design, so that we can make use of the

Manikkanan. D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 492-497

www.ijcsit.com 493

interaction protocol design. The derivation for collaborative
goals consists of the following steps [14]:

1. for all g Є {collaborative goals} do
/* create a test suite for g */

2. identify agents involved
3. identify interaction scenarios
4. identify interaction protocols
5. identify fulfillment criteria (oracle) for each

scenario
6. create a test suite for each scenario
7. end for

The procedure reads: in the architectural design of the
system we identify a set of collaborative goals. For each of
these goals we identify agents that are involved, interaction
scenarios, and protocols. Then, we identify fulfillment
criteria for the goal. Finally, for each scenario we can
define a test suite making use of data identified, i.e. agents,
protocols, criteria, and so on.

Testing the integration of agents with the operating
environment consists of testing their perception and
affecting capabilities. That is, we need to make sure that the
agents under test are able to perceive changes regarding the
resources they are interested in. We test whether they can
affect such resources properly. The following steps guide
us when deriving test suites for testing the agent-
environment interaction:

1. for all agent do
2. identify related resources
3. identify integration scenarios
4. identify access policy, interaction protocol, and

other related factors if any.
5. identify fulfillment criteria (oracle) for each

scenario
6. create one test suite for each scenario
7. end for

The procedure is described as follows: for each agent type
in the system we identify resources that the agents of the
type use. Then, we identify usage or interaction scenarios,
access policies, protocols, and other related factors. Finally,
we define criteria for each scenario and create a test suite
for it, making use of the data identified.

V. CASE STUDY
In the following sections we illustrate the process of design
using PDT [4], showing the artifacts produced for the
example Small Library Management system [13]. This
system should be able to do the following things:

• Allow for validate members, Checkout member
details.

• Allow for checkout of books, providing a return date
to the customer

• Allow for return of books
• Allow for reservation of unavailable books
• Allow for notification of overdue books
• Allow for notification of arrival of reserved books

An Equivalence Class (EC) [5], [9] is a set of input values
such that if any value is processed correctly (or incorrectly),
then it is assumed that all other values will be processed
correctly (or incorrectly). We consider the open intervals
and the boundary values of the variable domains to
generate ECs, as the former gives equivalent valid values
and the latter are edge values that should be checked
carefully during testing. We also consider some invalid
values.
An EC that we define has five fields:

1. Var-name: The name of the variable.
2. Index: A unique identifier.
3. Domain: An open interval or a concrete value.
4. Validity: Whether the domain is valid or invalid.
5. Sample: A sample value from the domain.

Example for open interval (0.0, +∞) and concrete
value (x=3). Table 1 gives the equivalence classes
for the example variables above.

Electronic Bookstore has been unit tested [5], test case is
generated for the stock manager agent, in this paper the
sample system that we used, was the Simple Library
Management system. This is an agent-based system which
contains the agents such as CheckMember, Checkout,
Overdue, and Reservation agents.
In architectural design, system overview diagram has been
shown in figure 3. In unit testing we generate the test case
for Checkout agent, in integration testing we test the
interaction between two agents such as Check Member,
Checkout.

Figure.3 System Overview Diagram

Manikkanan. D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 492-497

www.ijcsit.com 494

We used the CheckoutAgent as the agent under test (AUT),
and specifically edited the code to introduce all identified
types of faults. The testing framework generator
automatically generated the testing framework for the
testable units of the Checkout Agent, and then executed the
testing process for each unit following the sequence
determined by the testing-order algorithm [5]. For each unit,
the testing framework ran one test suite, which was
composed of a set of test cases, with each case having as
input one of the value combinations determined.

TABLE I. EC FOR ALL VARIABLES

Variable Index Domain Valid Sample

BookID
EC-1 (1, 3000) Yes 100
EC-2 (-∞, 0) No -2
EC-3 (3001, ∞) No 3003

Availability
EC-1 Yes Yes Yes
EC-2 No Yes No

ReturnDate
EC-1 (DD, MM, YY) Yes 23-10-10
EC-2 (DD, MM, YY) No 10-23-10
EC-3 Null Yes Null

In this Library totally 3000 books are available. Each book
has its own ID. User can search the books using the BookID
with in the range 1 to 3000. If it is a valid BookID then user
can able to check the availability of book, if book available
then CheckoutAgent will generate return date for the book.
If book not available then user will reserve the book. For
which ECs are shown in Table 1.
In Table 1 the Variable BookID have the four ECs. EC-1 is
the valid input, but EC-2, EC-3 and EC-4 are invalid inputs.
In EC1, Domain is the concrete value such as (1, 3000), if
any input value between this domain means that should be
valid. In EC-2 Domain is open interval such as (-∞, 0) so if
any input value negative means that should be invalid. In
EC-3 Domain is the open interval such as (3001, ∞) if any
input value is greater then 3000 means that should be
invalid. In EC1 Domain is the concrete value such as (0), if
the input value is zero means the input should be invalid.
In Table 1 the variable Availability have two ECs. Both
EC-1 and EC-2 are valid. If the book available means the
Domain have the value YES otherwise NO.
In Table 1 the variable ReturnDate have the three ECs. If
the book available means the agent should provide the
return date
for that book. Here test whether the return date format is
valid or not. Here valid return date format is (DD, MM,
YY), and invalid return date format is (MM, DD, YY).
In Table 2 test the combination of Equivalence Class. In
which the index 1 and 2 are valid but index 3, 4 and 5 are
invalid.
In Table 2 for Index-1 BookID sample value is 100, it is
valid because it comes with in domain range (1-3000).
Availability is also valid because the book available. The
ReturnDate is valid because of the valid table format (MM,
DD, YY).
For Index-3 BookID sample value is valid, Availability is
also valid but ReturnDate is not valid because of the invalid
table format.
For Index-4 BookID sample value -100 is not valid because
of the domain (-∞, 0) is not valid in Table-1.

For Index-5 BookID sample value 0 is not valid because of
the domain (0) is not valid in Table-1.

TABLE II. LIST OF EC COMBINATIONS

VI. INTEGRATION TESTING

Check Member Agent checks validity of Student and Staff
IDs before taking the books. It also maintains the Staff and
Student information about return date and number of books
taken. Staff can take 10 books and student take 6 books for
their IDs. Staff User ID starts from 1 to 100 and Student
User ID starts from 1000 to 5000.
Checkout Agent checks the availability of books and
provides the return date for the books.
First test the Student or Staff ID before taking the books.
Then test Checkout BookID is valid or not. If BookID is
valid then check the book is available or not, if books are
available then user can take the book otherwise reserve the
book. Before user can take the book check the Student User
ID details, how many books already taken. If student user
already taken six books means he can’t able to take another
book. Once book has been taken CheckoutAgent must
provide the return date and send the update message to the
CheckmemberAgent.
Now see the Table 3 in detail. Each Staff and Student has
its own ID number.
Staff User ID valid domain range starts from 1 to 100.
Staff User ID has six Equivalence Classes in which EC-1,
EC-4 are valid and EC-2, EC-3 is invalid. EC-3 sample
value is 101 it is invalid because the domain value (101, ∞)
is not valid. EC-4 domain is null because if Student User
ID processing take place means Staff User ID should be
Null, if Staff User ID processing take place means Student
User ID Processing should be Null.

IF UserID > 0 AND UserID < 101
THEN post Event (Staff User ID)
END IF

IF UserID > 1000 AND UserID < 5001
THEN post Event (Student User ID)
END IF

Student User ID has four ECs. Each Student User have
there own ID range starts from 1000 to 5000. In which also
EC-1, EC-4 are valid and EC-2, EC-3 are in valid similar to
Staff User ID.
CheckOut Book ID has three ECS. Each and every book
has its own ID. Totally 3000 books are present in the
library. The Domain valid rage starts from 1 to 3000. In
EC-1 CheckOut Book ID sample value 100 is valid. EC-2
and EC-3 domains are invalid. In EC-2 domain value starts

Index BookID Availability ReturnDate Validity

1
EC-1
(100)

EC-1
Yes)

EC-1
(23-10-10)

Valid
2

EC-1
(100)

EC-2
 (No)

EC-3
(Null)

3
EC-1
(100)

EC-1
(Yes)

EC-2
(10-23-10)

Invalid 4
EC-2
(-2)

EC-2
(No)

EC-3
(Null)

5
EC-3

(3003)
EC-2 (

No)
EC-3
(Null)

Manikkanan. D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 492-497

www.ijcsit.com 495

from (-∞ to 0), the sample input -2 is invalid. In EC-3
sample CheckOut Book ID value is 3001, so it is invalid
because the CheckOut Book ID value must in-between 1 to
3000. For EC-1

BookID = 100
IF BookID > 0 AND BookID ≤ 3000
THEN post Event (Check Availability)

Availability has two ECs. Here the Domain values are YES
and NO. If requested book available means agent would get
books, otherwise agent would reserve the book

IF Availability = YES
THEN post Event (Request for User ID)
IF Availability = NO
THEN post Event (Reserve Book)

Check staff ID before take book has three ECs. Here
before providing the books the CheckOutAgent request the
User Detail message from the CheckMemberAgent.
In EC-1 the domain value are (9, 10) where 9 is number of
books already taken and 10 is total number of books per
user. The sample value denotes number of books requested
by the user. In EC-1 the sample input value 1 is valid
because the user already taken only 9 books.

IF Staff ID books ≤ 10
THEN post Event (Provide Book, Provide Return
Date, and Update User ID)

Check staff ID after take book has four ECs. Here
CheckOutAgent after providing the books and return date, it
will send update message to the CheckMember Agent. In
EC-1 domain value are (10, 10) where first 10 is the
updated value for number of books taken and second 10 is
total number of books per user. Here sample values denote
total number of books taken including the recently taken
books. In EC-2 the sample value is 10, but the domain
value (9, 10) is invalid
because the after taking the book the domain value is not
updated. In EC-3 domain value are (11, 10) is invalid
because user taken 11 books.

IF BookID = Provided
THEN Check updated value of user ID

Check student ID before take books are similar to the
Check staff ID before take book.
Check student ID after take book are similar to the Check
staff ID after take books.
ReturnDate have the three ECs. If the book available
means the agent should provide the return date for that
book. Here we have to test whether the return date format is
valid or not. Here valid return date format is (DD, MM,
YY), and invalid return date format is (MM, DD, YY).
Now we can see the Table 4 List of Equivalence Class
combinations in detail. In which the index 1 and 2 are valid
but index 3, 4, 5, 6, 7 and 8 are invalid.
In index-3 CheckStaff ID after taking the books, are invalid,
because the value is not updated.
In index-4 Student user ID, sample value 999 and
CheckOut Books sample value -2 are invalid.
In index-5 Date format is invalid.
In index-6 CheckStudent ID after taking the books, are
invalid because books value is not updated.
In index-7 Staff user ID, sample value 101 is not valid,
In index-8 Student user ID sample value 5001 is not valid,

VII. CONCLUSION
The need for software testing is well known and accepted.
While there are many software testing frameworks for
traditional systems like Object-Oriented software systems,
there is little work on testing Agent Oriented systems. Most
of the work is based on the conformance testing which tests
if the system meets the business requirements and restricted
to block-box testing. In contrast to these approaches fault-
directed testing has been introduced [5] which test the
internal processes of the system and not the business
requirements, but they concentrated on to the unit- testing,
in which they test only internal process of single agents
such as events, plans and belief-sets. It is not enough, so we
extend this work into integration testing, in which we test
the interaction of agents, communication protocol and
semantics, interaction of agents with the environment,
integration of agents with shared resources. As with the
other testing levels, integration test suites are aimed at two
distinctive targets:

(i) To refine the interaction design and solve
integration problems as early as possible.

(ii) To test the integration of the implemented
agents with one another and with the
environment.

Roles are the essential concept with agent-oriented
software engineering (AOSE). Roles specifications are the
first artifacts created by many methodologies. So in future
we planned to test the Roles in the Prometheus
methodology.

TABLE III. EC FOR ALL VARIABLES

Variable Index Domain Valid Sample

Staff User ID

EC-1 (1,100) Yes 99
EC-2 (-∞, 0) No -99
EC-3 (101, ∞) No 101
EC-4 Null Yes Null

Student User ID

EC-1 (1000, 5000) Yes 1001
EC-2 (-∞, 999) No 999
EC-3 (5001, ∞) No 5001
EC-4 Null Yes Null

CheckOut Book ID
EC-1 (1, 3000) Yes 100
EC-2 (-∞, 0) No -2
EC-3 (3001, ∞) No 3001

Availability
EC-1 Yes Yes Yes
EC-2 No No No

Check staff ID
before take the

book

EC-1 (9, 10) Yes 1
EC-2 (10,10) No 1
EC-3 Null Null Null

Check staff ID after
take the book

EC-1 (10, 10) Yes 10
EC-2 (9, 10) No 10
EC-3 (11, 10) No 11
EC-4 Null Null Null

Check student ID
before take the

book

EC-1 (5, 6) Yes 1
EC-2 (6, 6) No 1
EC-3 Null Null Null

Check student
ID after take the

book

EC-1 (6, 6) Yes 6
EC-2 (5, 6) No 6
EC-3 (7, 6) No 7
EC-4 Null Null Null

Provide Return
Date

EC-1 (DD, MM, Yes 23-10-10
EC-2 (DD, MM, No 10-23-10
EC-3 Null Null Null

Manikkanan. D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 492-497

www.ijcsit.com 496

TABLE IV. LIST OF EC COMBINATIONS

REFERENCES

[1] Mailyn Moreno, Juan Pavón, Alejandro Rosete. “Testing in Agent
Oriented Methodologies”, S.Omatu et al. (Eds.): IWANN 2009,
Part II, LNCS 5518, pp. 138–145, 2009. Springer-Verlag Berlin
Heidelberg 2009.

[2] Praveen Ranjan Srivastava, Karthik Anand V, Mayuri Rastogi,
Vikrant Yadav, G Raghurama. “Extension of Object-Oriented
Software Testing Techniques to Agent Oriented Software Testing”,
in Journal of Object Technology, vol. 7, no. 8, pp. 155-163,
November-December 2008.

[3] Zhiyong Zhang, John Thangarajah and Lin Padgham, “Automated
Unit Testing Intelligent Agents in PDT (Demo Paper)”.
Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Estoril,Portugal,pp. 1673-1674, May,12-
16.,2008.

[4] .Padgham, J.Thangarajah, and M.Winikoff. “The Prometheus Design
Tool – A Conference Management System Case Study”. AOSE
2007, LNCS 4951, pp.197–211, 2008. Springer-Verlag Berlin
Heidelberg 2008.

[5] Z. Zhang, J.Thangarajah, and L.Padgham. “Automated unit testing
for agent systems”. In 2nd International Working Conference on
Evaluation of Novel Approaches to Software Engineering
 (ENASE 07), pages 10–18, Spain, July 2007.

[6] Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: SUNIT. “A
Unit Testing Framework for Test Driven Development of Multi-
Agent Systems”. In: Padgham, L., Zambonelli, F. (eds.) AOSE VII /

AOSE 2006. LNCS, vol. 4405, pp. 156–173. Springer, Heidelberg
(2007).

[7] Coelho, R., Kulesza, U., Staa, A.v., Lucena, C. “Unit Testing in
Multi-Agent Systems Using Mock Agents and Aspects”. In:
International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, pp. 83–90. ACM, Shanghai (2006).

[8] Rouff, C. “A Test Agent for Testing Agents and Their
Communities”. In: Aerospace Conference Proceedings, vol. 5, pp.
2633–2638 (2002).

[9] Binder, R. V. (1999). “Testing Object-Oriented Systems: Models,
Patterns, and Tools”. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA

[10] Nwana, H., Ndumu, D., Lee, L., Collis, J.ZEUS. “A Toolkit for
Building Distributed Multi-Agent Systems”. Applied Artificial
Intelligence 13, 129–185 (1999).

[11] L. Apfelbaum and J. Doyle. ”Model Based Testing”. In the 10th
International Software Quality Week Conference, CA, USA, 1997.

[12] Rao, A. S. and Georgeff, M. P. “BDI Agents: From Theory to
Practice”. In Lesser, V., editor, the First International Conference on
Multi-Agent Systems, pages 312–319, San Francisco (1995).

[13] http://www.cs.rmit.edu.au/agents/pdt/docs/Tutorial.pdf
[14] Cu Duy Nguyen. “Testing Techniques for Software Agents”. PhD

Dissertation, International Doctorate School in Information
&Communication Technologies, DIT - University of Trento,
December 2008.

Index
Staff

UserID
Student
UserID

Check
Out

Book
Availability

Check
Staff ID
before
taking

the book

Check
Staff ID

after
taking

the book

Check
Student

ID
Before
taking

the book

Check
Student

ID
after

taking
the book

Provide
Return

Date
Validity

1
EC-1
(99)

Null
EC-1
(100)

EC-1 (Yes)
EC-1
(1)

EC-1
(10)

Null Null
EC-1

(23-10-10)
Valid

2 Null
EC-1

(1001)
EC-1
(100)

EC-1 (Yes) Null Null
EC-1
 (1)

EC-1
 (6)

EC-1
(23-10-10)

3
EC-1
(99)

Null
EC-1
(100)

EC-2 (Yes)
EC-1
(1)

EC-1
 (9)

Null Null
EC-1

(23-10-10)

Invalid

4 Null
EC-2
(999)

EC-2
(2)

EC-2 (No) Null Null
EC-1
(1)

EC-1
 (5)

EC-1
(23-10-10)

5
EC-1
 (99)

Null
EC-1
(100)

EC-1 (Yes)
EC-1
 (1)

EC-1
(9)

Null Null
EC-2

(10-23-10)

6 Null
EC-1

(1001)
EC-1
(100)

EC-1 (Yes) Null Null
EC-1
 (1)

EC-1
 (4)

EC-2
(23-10-10)

7
EC-3
(101)

Null
EC-1
(100)

EC-1 (Yes)
EC-1
(1)

EC-1
(9)

Null Null
EC-1

(23-10-10)

8 Null
EC-3

(5001)
EC-1
(100)

EC-1 (Yes) Null Null
EC-1
 (1)

EC-1
6)

EC-1
(23-10-10)

Manikkanan. D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 492-497

www.ijcsit.com 497

